206 research outputs found

    Optical manipulation of microscopic objects by means of vertical-cavity surface-emitting laser array sources

    Full text link
    This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/AO.40.005430 Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law

    Observation of a stacking process of microparticles with multiple beams

    Full text link
    This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/AO.44.003271 Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law

    Optical levitation and translation of a microscopic particle by use of multiple beams generated by vertical-cavity surface-emitting laser array sources

    Full text link
    This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/AO.41.005645 Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law

    Stacking and translation of microscopic particles by means of 2×2 beams emitted from a vertical-cavity surface-emitting laser array

    Full text link
    Copyright 2003 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters, 82(18), 2969-2971, 2003 and may be found at http://dx.doi.org/10.1063/1.157093

    Discrete correlation processor as a building core of a digital optical computing system : architecture and optoelectronic embodiment

    Full text link
    This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/AO.38.007276 Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law

    Wavelength-multiplexing diffractive phase elements : design, fabrication, and performance evaluation

    Full text link
    This paper was published in Journal of the Optical Society of America A and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/JOSAA.18.001082 Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law

    Optoelectronic parallel-matching architecture : architecture description, performance estimation, and prototype demonstration

    Full text link
    This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/AO.40.000283 Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law

    Spatial-photonic Boltzmann machines: low-rank combinatorial optimization and statistical learning by spatial light modulation

    Full text link
    The spatial-photonic Ising machine (SPIM) [D. Pierangeli et al., Phys. Rev. Lett. 122, 213902 (2019)] is a promising optical architecture utilizing spatial light modulation for solving large-scale combinatorial optimization problems efficiently. However, the SPIM can accommodate Ising problems with only rank-one interaction matrices, which limits its applicability to various real-world problems. In this Letter, we propose a new computing model for the SPIM that can accommodate any Ising problem without changing its optical implementation. The proposed model is particularly efficient for Ising problems with low-rank interaction matrices, such as knapsack problems. Moreover, the model acquires learning ability and can thus be termed a spatial-photonic Boltzmann machine (SPBM). We demonstrate that learning, classification, and sampling of the MNIST handwritten digit images are achieved efficiently using SPBMs with low-rank interactions. Thus, the proposed SPBM model exhibits higher practical applicability to various problems of combinatorial optimization and statistical learning, without losing the scalability inherent in the SPIM architecture.Comment: 7 pages, 5 figures (with a 3-page supplemental

    Regeneration of spermatogenesis by mouse germ cell transplantation into allogeneic and xenogeneic testis primordia or organoids

    Get PDF
    Gametogenesis requires close interactions between germ cells and somatic cells. Derivation of sperm from spermatogonial stem cells (SSCs) is hampered by the inefficiency of spermatogonial transplantation technique in many animal species because it requires a large number of SSCs and depletion of endogenous spermatogenesis. Here we used mouse testis primordia and organoids to induce spermatogenesis from SSCs. We microinjected mouse SSCs into embryonic gonads or reaggregated neonatal testis organoids, which were transplanted under the tunica albuginea of mature testes. As few as 1 × 10⁴ donor cells colonized both types of transplants and produced sperm. Moreover, rat embryonic gonads supported xenogeneic spermatogenesis from mouse SSCs when transplanted in testes of immunodeficient mice. Offspring with normal genomic imprinting patterns were born after microinsemination. These results demonstrate remarkable flexibility of the germ cell-somatic cell interaction and raise new strategies of SSC manipulation for animal transgenesis and analysis of male infertility

    Spatial-photonic Ising machine by space-division multiplexing with physically tunable coefficients of a multi-component model

    Full text link
    This paper proposes a space-division multiplexed spatial-photonic Ising machine (SDM-SPIM) that physically calculates the weighted sum of the Ising Hamiltonians for individual components in a multi-component model. Space-division multiplexing enables tuning a set of weight coefficients as an optical parameter and obtaining the desired Ising Hamiltonian at a time. We solved knapsack problems to verify the system's validity, demonstrating that optical parameters impact the search property. We also investigated a new dynamic coefficient search algorithm to enhance search performance. The SDM-SPIM would physically calculate the Hamiltonian and a part of the optimization with an electronics process.Comment: 12 pages, 5 figure
    corecore